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Abstract

Attention-based models are appealing for multimodal
processing because inputs from multiple modalities can be
concatenated and fed to a single backbone network – thus re-
quiring very little fusion engineering. The resulting represen-
tations are however fully entangled throughout the network,
which may not always be desirable: in learning, contrastive
audio-visual self-supervised learning requires independent
audio and visual features to operate, otherwise learning
collapses; in inference, evaluation of audio-visual models
should be possible on benchmarks having just audio or just
video. In this paper, we introduce Zorro, a technique that
uses masks to control how inputs from each modality are
routed inside Transformers, keeping some parts of the rep-
resentation modality-pure. We apply this technique to three
popular transformer-based architectures (ViT, Swin and HiP)
and show that with contrastive pre-training Zorro achieves
state-of-the-art results on most relevant benchmarks for mul-
timodal tasks (AudioSet and VGGSound). Furthermore, the
resulting models are able to perform unimodal inference on
both video and audio benchmarks such as Kinetics-400 or
ESC-50.

1. Introduction
Our perception of the world is inherently multimodal:

humans and other animals effortlessly integrate many modal-
ities to build their view of the world [5, 23]. Although mul-
timodal integration can help construct a richer perspective
on reality [10, 44], humans can easily process information
and perform tasks even when only a single modality (e.g.
sound, vision, or touch) is present [11, 32, 45]. However, this
flexibility is hard to find in perceptual computational mod-
els. Architectures for multimodal perception have typically
been divided on early fusion, mid-fusion and late-fusion, but
most of them need all modalities to be present in order to
operate. With human flexibility as an inspiration, in this
paper we introduce Zorro, a multimodal Transformer archi-
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tecture which is able to operate in both a single-modality and
multi-modality setting. This property improves the overall
performance of the model while opening the door to off-the-
shelf self-supervised pre-training.

Our key architectural innovation in Zorro is to create
separate unimodal and multimodal (fusion) representation
streams within a single standard Transformer backbone. We
achieve this without engineering the architecture, but instead
by applying appropriate masks in all attention operations,
resulting in some outputs that only capture individual modal-
ities and some outputs that capture multimodal information.
This has the direct benefit that the model can be applied
when a subset of modalities is absent, e.g. a model trained
on audio and video can be evaluated on audio alone.

While most of the emphasis of novel developments in
the supervised space is put on the architecture, the uni-
modal outputs can be further exploited by introducing addi-
tional self-supervised training schemes. In contrast to recent
multimodal attention-based models [27, 36] that entangle
both modalities throughout the network, Zorro supports self-
supervised contrastive training in a single network without
representation collapse, thanks to its unimodal outputs (see
Figure 1). In this work, we explore this possibility by pre-
training our model with an audio-visual contrastive loss [3].
Differently from previous work, we can do this pre-training
without the necessity of separate backbones per modality.

This paper presents four contributions: (a) we introduce
Zorro, a novel set of Transformer-based multimodal archi-
tectures which enable both supervised and self-supervised
training and, once trained, can be used for multimodal or
unimodal inputs; (b) we introduce three Zorro-based archi-
tectures using state-of-the-art models such as ViT, SWIN
and HiP; (c) we show that Zorro can be pre-trained on a
large-scale audio-visual dataset in a self-supervised man-
ner, and can also be pre-trained on unimodal datasets; and
(d) we benchmark our resulting models on AudioSet, VG-
GSounds, Kinetics-400 and ESC-50. The model achieves
state-of-the-art performance when compared with previous
self-supervised learning techniques on most relevant bench-
marks, while also achieving comparable performance with
previous work for supervised training with labels.
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Figure 1. In this paper we introduce the Zorro multimodal architecture which enables both self-supervised contrastive learning and supervised
learning. When used for self-supervision, the single-modality outputs are used together with a standard cross-modal self-supervised loss.
When used for supervised learning, all outputs can be used for the final classification.

2. Related Work
Multimodal perception: Multimodal perception is chal-
lenging as data from the various modalities can have different
topologies, temporal frequencies and relative importances
that depend on each task [9]. With the emergence of convo-
lutional neural networks, numerous works fused activations
from intermediate tensors [7, 14, 19, 21, 47, 52, 53], but this
required considerable engineering, as different modalities
come in differently shaped feature grids and there are many
different ways to combine them.

Self-supervised audio-visual learning: Various methods
have been used to employ the cross-modality similarity as
a self-supervisory signal [4, 6, 7, 30, 35, 37, 39, 43]. Most
approaches rely on single-modality backbones which pro-
duce representations which are used in the self-supervised
loss [3, 4, 39, 41]. These techniques process different modal-
ities with different sets of weights and restrict the ability
to reason across modalities. Less common are approaches
which learn self-supervised models with multiple modalities
at once. One recent work in this direction is [46], which
learns representations using audio, video and text. However,
to avoid the collapse of the self-supervised loss, they feed
the modalities two at a time, increasing the amount of nec-
essary forward passes. Instead, Zorro masking can produce
unimodal outputs without running the model multiple times.

Transformer architectures: Inspired by ViT [18], follow
up work proposed single-modality processing for video [8]
and audio [24] using patch-based encodings. Transformer-
based methods have also been proposed to tackle audio-
visual classification. The closest to our method is MBT [36],
which builds a multimodal architecture out of single-
modality Transformers for video [8, 18] and audio [24].
MBT merges modalities by creating an attention bottleneck

which restricts communication between the audio and visual
heads. Our method also regulates cross-modality commu-
nication, but by masking the latent connections we are able
to obtain modality-specific heads while in MBT the repre-
sentation is entirely multimodal. Another relevant work is
VATT [2], a Transformer-based architecture to model video,
audio and text with a single backbone. Differently from our
work, in VATT each modality is independently processed
by the transformer. Finally, the Perceiver architecture [27]
scales to a large number of inputs by cross-attending to a
set of latent queries. In this work, we use the follow-up
Hierarchical Perceiver [13] which splits inputs and outputs
into groups to improve model efficiency.

Masking attention in Transformers: The original trans-
former architecture [50] used attention-masking for language
modelling. After the success of image-based architectures,
alternatives have been proposed to use attention masking
to alleviate computational requirements of the architecture.
Swin [34] proposed the use of local windows, restricting
the self-attention layers to only neighbour pixels. Further-
more, mask2former [16], also restricted the cross-attention
to local regions, enabling the use of transformers for high
dimensional output (e.g segmentation).

3. Zorro: the masked multimodal Transformer

In this paper, we introduce Zorro, a multimodal architec-
ture which enables both supervised and self-supervised train-
ing. In this section, we unpack how Zorro accomplishes this
using modality-aware masking and by repurposing the origi-
nal transformers components to allow contrastive learning
between modalities. The key innovation of the architecture
is introducing separate latent allocations for the different
modalities, leading to a final representation which is par-
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Figure 2. The Zorro-ViT model architecture: The input to our model are video frames and audio spectrograms. Each of those inputs is
patched using a 2D convolution and projection to input dimension D. Both audio and video input tokens are concatenated with a set of
learned fusion vectors and added a position embedding. Next, we process these inputs through L Zorro’s self-attention layers, where the
Zorro masking is applied. Specifically, our masking strategy blocks the information to flow towards the unimodal hidden representation,
while still allowing the fusion representation to access all modalities. By doing this, we ensure that the image and audio representations
are gated access to (i.e. depend on) only the video and audio inputs respectively. To produce the outputs, we learn a set of queries that
cross-attend (also using masked attention) to the unimodal and multi-modal representation.

tially unimodal (part of the representation sees only a single
modality) and partially multimodal (part of the representa-
tion can attend to all modalities). First, we will describe
Zorro applied to the ViT architecture. Second, we extend
Zorro to two other state-of-the-art transformer architectures,
Swin and HiP. Finally, we end this section by describing how
to use Zorro for self-supervised contrastive learning.

3.1. Architecture

Zorro-ViT overview. Figure 2 depicts the Zorro architec-
ture, which consist of three main blocks. First, Zorro pro-
cesses the data in form of patches (similar to ViT [18]). In
this stage, data from each modality is first converted into
a 2D array of representations. This can be done by either
(i) dividing the input tensor into sequential groups (either
points or patches) and applying a linear projection, or (ii)
applying domain-specific processing such as 1D/2D/3D con-
volutions and flattening. We use a 2D convolution to extract
16 × 16 patches and project them to the input dimension
D. Next, position embeddings are added to the projected
vectors so that the model is able to localise and distinguish

each embedded patch. Learned multimodal fusion vectors
are then introduced. Second, the resulting tokens are con-
catenated to form a single set and are then processed by L
layers of a Transformer [50] with Zorro masking. Finally, to
produce the final output we learn a set of queries that cross-
attend to the output of the last self-attention layer similar
to PerceiverIO [26]. We utilise the standard cross-attention
operation [26], and produce 4 different outputs: an audio
output, a video output, a fusion output (which only sees the
multi-modal part of the representation) and a global output
that sees the whole representation. These three steps are
described in more detail next.

Input pre-processing. Let x = (xv, xa) be a video sample
consisting of frames xv ∈ RNf×H×W×3 and audio spec-
trogram xa ∈ RT×Ns where Nf is the number of frames,
Ns the dimensionality of the spectrogram, H is the height
of the frame, W is the width of the frame and T is the
number of temporal steps in the spectogram. To downscale
the input, we use a 2D convolution fpatch which yields
u = (uv, ua) = (f

pre
v (xv), f

pre
a (xa)). Arrays (uv, ua) are



then flattened and absolute learned position encoding are
added. Finally, we learn a set of nfusion latent vectors
which are concatenated to the audio and video input tokens.

Masked attention. The key contribution of this paper is
splitting the Transformer representation into specialised
groups. Using masked attention we force part of the repre-
sentation to attend only to itself, while other parts can attend
to the whole representation. The main goal of this approach
is to split the representation in three parts: a part which
only focuses on video tokens, a part which focuses on audio
tokens, and the remaining vectors which can attend to the
whole representation.

We mask two parts of the model: the self-attention [50]
and the decoding cross-attention [26]. Both parts consist of
the same underlying operation which takes keys k, values
v and queries q to produce the final output o. To this end,
we introduce a masking binary tensor m that specifies which
vectors are connected to each other. Entries of the masking
matrix are mij = 1 if information can flow from latent i
to latent j. By setting mij = 0, we indicate to the model
that this connection should be omitted. This mask is applied
to the standard attention output operation oi =

∑
j aij · vj

which becomes oi =
∑
j âij · vj where:

âij =
mij exp(

q>i kj√
D

)∑
{j′, mij′=1}

exp(
q>i kj′√
D

)
. (1)

In contrast to MBT [36], our modality-specific representa-
tion does not have access to the global representation, which
prevents cross-modality information flows. Specifically, we
set mij = 1 if j is a part of the fusion representation, oth-
erwise we only set mij = 1 if i and j are vectors of the
same modality. By doing this, we explicitly prevent infor-
mation from the fusion stream leaking into the unimodal
representation. This is the key to preserving pure streams
that correspond to single modalities.

Output space. In ViT architecture, a learnable CLS token
is used to produce the output embedding vector. Instead,
inspired by the PerceiverIO [26], we learn a set of decoding
vectors which are used to query the output from the Trans-
former to produce the final output. Each decoding vector
cross attends to a subset of tokens to produce the final output
vector. This decoding strategy can be used to produce as
many outputs as desired, opening up the possibility for dense
tasks such as segmentation or flow estimation.

As we are relying on having the Transformer represen-
tation split into specialised groups, we need to also apply
Zorro’s masking to the output cross attention. Specifically,
we found it beneficial to define four outputs for our model.
The audio-specific output oA, which only contains informa-
tion coming from the audio input. The video-specific output

ov , which only includes information from the video modality.
The fusion specific output oF , which is computed by attend-
ing only to the fusion stream. And finally, a global output
oG, which attends to all the outputs in the model. Although
oG and oF do contain similar information, we found it useful
to still keep two different heads.

3.2. Extending Zorro for other architectures

In this section, we propose variants of Zorro for two
state-of-the-art attention-based architectures, Swin and HiP.
Differently from the ViT implementation, when building
Zorro-Swin and Zorro-HiP we use the specific architecture
building block for each modality and the fusion stream while
we join the modalities with a cross-attention operation. This
is required as the ViT masking is not directly applicable to
Swin and HiP, but the overall idea remains the same.
Zorro-Swin: Swin [34] is a ViT-inspired transformer archi-
tecture which has shown improved efficiency and perfor-
mance. The main innovation versus the original ViT archi-
tecture is to apply the self-attention operations on nearby
tokens instead of all tokens in the input image. This reduces
computational requirement while allowing the model to per-
form bottom-up inference. In order to build Zorro-Swin, our
main modification to the original architecture is to process
individual modalities using Swin transformers. At the end
of each Swin block, we update the fusion representation by
cross-attending to both the unimodal and multimodal repre-
sentation. To process the fusion representation, we use the
same self-attention as in Zorro-ViT. Given this design, we
are free to use different architectures to process each modal-
ity. We use the original 2D Swin [34] to process the audio
spectrograms while our adaptation of the Swin architecture
for video. Similarly to Zorro-ViT, no multimodal informa-
tion flows into the unimodal streams. Detailed description
of Zorro-Swin can be found in Section A in the Appendix.
Zorro-HiP: The hierarchical perceiver [13] extends the pre-
viously introduced Perceiver models [26, 27] models, by
splitting the inputs into groups, and operating only within
those groups. Through the hierarchical architecture, those
groups fuse together in order to aggregate information and
globally reason about the input. In our implementation of
HiP, instead of using directly the pixels and audio signal as
input, we create patches similarly to the ViT/Swin imple-
mentation. In order to create Zorro-HiP, we use HiP building
blocks for each modality. Specifically, those blocks group
the inputs into smaller sets, cross-attend using learned fea-
tures and finally apply self-attention layers to the outputs of
the cross attention operation (see [13] for more details). In
order to update the fusion representation, we learn a set of
queries which cross attend to both unimodal and multimodal
representation per each layer. More details can be found in
Section A in the Appendix.



3.3. Contrastive learning with Zorro

Contrastive audio-visual methods learn representations by
aligning audio and video into a common embedding space.
As opposed to unimodal approaches, instead of producing
multiple views of the data, they use different modalities as
views. One important requirement is for the two backbones
to not share information. If information is shared across
modalities, the self-supervised training can easily collapse
or converge to a trivial solution.

Models for multimodal perception typically produce a
single output for the multiple inputs. This is sufficient for
supervised applications, but prevents the use of these audio-
visual contrastive techniques. We design Zorro in order to
process unimodal and multimodal outputs, with the intention
of enabling the use of self-supervised contrastive losses.

Noise Contrastive Estimation: For training with the stan-
dard noise-contrastive estimation loss, we follow the imple-
mentation of the audio-visual loss from [3]. Given the audio
output oa and the video output ov, we apply a final linear
projection (different per modality) ga and gv to yield the
final embedding vectors: za = ga(oa) and zv = gv(ov).
We compute the similarity between za and zv by taking a
normalised dot product and dividing by a temperature pa-
rameter τ , sim(za, zv) = exp( ẑaẑvτ ). Finally we apply the
NCE loss:

LNCE(za, zv) = −
∑
i

log
sim(zia, z

i
v)∑

j,k sim(zka , z
j
v)

(2)

Equation 2 introduces describes the loss for audio-visual
contrastive training. However, this technique does not train
any parameters specific to the fusion representation or out-
put (e.g, the fusion cross-attention or the fusion weights
if the model has separate weights per modality). In order
to self-supervise the output of the fusion stream, we add a
fusion-visual and fusion-audio contrastive loss. We define
a self-supervised loss contrasting both unimodal representa-
tions (audio and video) separately with the multimodal one
(fusion). With those changes, the new loss is:

LNCE = LNCE(za, zv)+LNCE(za, zf )+LNCE(zI , zf ) (3)

4. Experiments

In this section, we evaluate the Zorro architecture on mul-
tiple settings. We first present details of the training and
evaluation procedures, as well as the main datasets we use.
We evaluate the method against state-of-the-art models on
three standard audiovisual benchmarks ( AudioSet [22], VG-
GSound [15] and Kinetics-400 [14]), one vision benchmarks
(Kinetics-400 [14]) and one audio benchmark (ESC-50 [40]).
Finally, we ablate the main design decisions that drove our
research and showcase Zorro’s flexibility. Specifically, we

compare the different architectures, study the effect of miss-
ing modalities, pre-train Zorro with unimodal data and ex-
plore alternative attention-masking strategies.

4.1. Experimental details

In order to showcase Zorro’s ability to reason across dif-
ferent modalities, we pre-train it using self-supervision as
well as with standard supervision using class labels. In this
section, we provide the most important details of the training
procedure. Additional details about inputs, architectures and
training can be found in Section A and B in the Appendix.

Pre-training datasets: We utilise four datasets for pre-
training: AudioSet [22], YouTube-8M, ACAV-100M [33]
and ImageNet-21k [42]. AudioSet consist of 1.9M videos
which contain 527 classes of annotated sounds. As the
dataset is highly unbalanced, [36] proposed a smaller more
balanced variant of the training set with 500k examples. For
the ablation experiments and training from scratch, we use
the 1.9M version while for fine-tuning we also use AudioSet-
500k for fair comparison with the state-of-the-art. YouTube-
8M [1] consist of 8M videos with audio and visual frames,
annotated in a multi-label fashion with 3862 different classes.
Videos are representative of many activities, resulting a very
natural distribution of data. ACAV-100M consist of 100M
videos with audio and visual frames without associated la-
bels, which have been curated to contain a strong audio-
visual correlation. We use 59M of those videos for self-
supervised learning. ImageNet-21k consist of 13M images
annotated on 21k classes, and been typically used for large-
scale pretraining of visual transformer models [18].

Audio-visual evaluation benchmarks: To evaluate the abil-
ity of Zorro to learn and transfer multimodal representations,
we evaluate on standard audio-visual benchmarks. Specifi-
cally, we evaluate Zorro in AudioSet, VGGSound [15] and
Kinetics-400 [28]. VGGSound consists of 163, 603 training
and 13579 test samples drawn from 10-second YouTube
videos which span 309 single-label, mutually exclusive
classes. It focuses on real life audio evaluation with audio-
visual correspondence where sounds are visually evident in
the video. Kinetics-400 consists of 201K training videos of
everyday actions which are classified into 400 unique classes.
While some datasets have bias in audio or video modality,
Zorro is able to learn the extent to rely on each modality.

Unimodal evaluation benchmarks: Zorro can be trained
on multi-modal data but evaluated on unimodal data. To
further show this we evaluate the multi-modal trained Zorro
models on unimodal fine-tunning tasks: Kinetics-400 for
vision and ESC-50 for audio. ESC-50 dataset contains 2k
clips classified into 50 unique classes.

Zorro inputs: The inputs to our model are video and au-
dio. The audio and video are synced and cover the same



Table 1. AudioSet-2M comparison: training from scratch. We
report the performance of our models trained on audio-visual data
compared with the state-of-the-art when trained from scratch. We
report the mean average precision on the AudioSet test set.

Model Train Mod Eval Mod AudioSet
HiP [13] A+V A+V 43.8

Perceiver [27] A+V A+V 44.2
ERANN [51] A A 45.0

Zorro-ViT A+V A+V 45.1
Zorro-HiP A+V A+V 45.2

Zorro-Swin A+V A+V 46.5

time span. Video consists of 8 frames of size 224 × 224.
When training in AudioSet, we sample videos at 3.12FPS
which results on 2.56s of audio and video. Specific FPS
per model and audio length for pre-training and fine-tuning
is reported in Section B in the Appendix. During training,
we use random cropping as well as color augmentation in
frames. For ESC-50, we match the lengths of the pre-trained
model, looping over the audio sequence if required. Audio
is sampled at 48kHz, converted to spectrograms as inputs to
our model using 128 bins. To augment the audio in training,
we use SpecAugment [38] and frequency jittering. During
evaluation, we subsample the input video and audio into
multiple equally spaced clips and averge their predictions.

Architectural details: Zorro is based on unimodal trans-
former architectures (ViT, Swin and HiP), adapted for multi-
modal processing (similar to [36]). Through all our experi-
ments we use ViT-B/16. For details on ViT, Swin and HiP
architecture, see Section A in the Appendix.

Training details: We use the Adam optimiser with cosine
decay learning rate schedule, weight decay and learning rate
warmup. When fine-tuning, for Zorro-ViT and Zorro-Swin
we find better to use SGD optimiser and momentum 0.9. We
train all models for 50 epochs except for the ACAV-100M
datasets where we train for 10 epochs and the input-level and
bottleneck baselines where we train for 25 to prevent severe
overfitting. We find best to use nfusion = 6 in all models.
For AudioSet fine-tuning, we use mixup (α = 0.3) and label
smoothing. We use cross-entropy loss for uni-label datasets
and binary sigmoid cross-entropy for multi-label. We train
one classifier for each of the 4 outputs of the model and
average its predictions. For contrastive training, we follow
the procedure outlined in Section 3.3.

4.2. State-of-the-art comparison

Next, we evaluate Zorro against state-of-the-art methods.
We evaluate our audio-visual trained Zorro on benchmarks
for audio-visual classification, video classification and audio
classification, showcasing the universality of the approach.

Training AudioSet-2M from scratch: First, we evaluate
Zorro when trained from scratch on Audioset-2M using both
the audio and visual modalities. Table 1 reports that Zorro
matches or overperforms other methods that directly trained
on AudioSet-2M from scratch. Note that PlayItBack [48] is
not listed in Table 1 as it was trained with AudioSet-500k.
This setting shows the model’s ability to adapt to the multi-
modal inputs without the need of pre-trained data.

Multi-modal comparison: We train and evaluate our pre-
trained models on AudioSet-500k (see [36] for details), VG-
GSound and Kinetics-400 where we use both the audio and
visual inputs. Similar to [36], for Zorro-ViT we allocate
different weights for the audio, video and fusion latents. We
found this useful for improving the fine-tuning accuracy.
Table 2 reports the performance of our models. We divide
the table into two different parts. First, we report the Zorro
performance when contrastive self-supervision is used for
pre-training (no labels). Zorro improves over all previous
works on AudioSet and VGGSound. In AudioSet, our best-
performing model on that setting is only 1.2% away from
Zorro with supervised pre-training, which demonstrates the
ability of the self-supervised pre-training technique for learn-
ing general features. In VGGSound, Zorro performs simi-
larly with the supervised state-of-the-art when pre-trained
only with self-supervision. Finally, for Kinetics-400, the re-
sulting performance is not far from models with supervised
pre-training. In the bottom part of the table we report the
performance of Zorro when using supervised pre-training.
We include the performance of the model when initialized
with ViT pre-trained on ImageNet-21k. Even without multi-
modal pre-training, Zorro is able to perform more than 1%
better than existing SOTA models in AudioSet. When pre-
trained on YouTube-8M, Zorro improves its performance as
a result of the multi-modal nature of its pre-training. The
final performance in AudioSet represents a 1.9% improve-
ment over the state-of-the-art, MBT [36]. Furthermore, un-
like Zorro, MBT cannot perform unimodal inference when
trained with multi-modal data. Note, we have not demon-
strated it here, but Zorro can also be trained using unimodal
self-supervised methods such as MAE [25] and DINO [12]
separately on the audio and visual streams. We discuss su-
pervised unimodal training below.

Video comparison: To showcase Zorro’s performance in
the unimodal regime, we fine-tune our models (pre-trained
on audio and video) on the task of video classification for
Kinetics-400 using only video. Table 2 reports the results.
Our goal is not to show state-of-the-art performance on this
setting, as we are aware of the improvements made on Trans-
former architectures to solve that task [34, 54, 55]. Our goal
is to provide an efficient mechanism for pre-training those
architectures in order to improve the final performance on
unimodal and multimodal inference. When Zorro is pre-



Table 2. State-of-the-art results: We compare Zorro with the state-of-the-art in two settings: when labels are not used in pre-training
or when labels are used. We report the mean average precision on the AudioSet test set and top-1 accuracy on K-400, VGGSound and
ESC-50. IN-21k is ImageNet-21k [42], YT8M is YouTube-8M [1], ACAV is ACAV-100M [33] and K-400 is Kinetics-400 [14]. When using
ImageNet-21k initialisation, we use the pre-trained weights to initialise the video, audio and fusion parameters.

Model Pre-Training Eval: Video+Audio Eval: Video Eval: Audio
Dataset Sup/SSL Mod AS VGGSound K-400 K-400 ESC-50

No pre-training
SlowFast R101-NL [20] 79.8 79.8
AVSlowFast [53], R101 78.8

AudioSlowFast [29] 52.5
ERANN [51], R101 45.0 89.2

PlayItBack [48], R101 47.7 53.7

Self-supervised pre-training
MaskSpec [17], ViT AS SSL A 47.1 89.6

Zorro-HiP ACAV SSL A+V 49.4 61.3 67.9 64.6 88.4
Zorro-Swin ACAV SSL A+V 49.4 61.1 73.7 69.4 91.4
Zorro-ViT ACAV SSL A+V 50.3 63.6 76.5 74.1 93.6

Supervised pre-training
ViViT-Base [8] IN-21k Sup. V 80.0 80.0

MaskSpec [17], ViT AS Sup A 98.2
PaSST [31] IN Sup. V 49.6 96.8
AST [24] IN-21k Sup. V 45.9 95.7

MBT [36],ViT IN-21k Sup. V 49.6 64.1 80.8 79.4
Zorro-ViT IN-21k Sup. V 50.9 63.1 79.8 77.6 81.7
Zorro-ViT YT8M Sup. A+V 51.5 64.8 79.6 76.1 93.1

trained using a contrastive loss and fine-tuned on Kinetics-
400 (video only), Zorro-ViT performs only 2.4% worse than
when using audio-visual input. This shows the robustness of
our model when reduced to using a single modality. Further-
more, when using the Zorro model pre-trained on YT8M, our
model is able to perform similarly to comparable architec-
tures. Alternative to fine-tuning, we can also use the audio-
visual trained model (column Audio+Video) and only feed
the video. In that setting, our model trained on YouTube-8M
performs at 76.3 top-1, on par with the video only fine-tuned
result. This unimodal inference on a multi-modal trained
model is not possible with MBT, where retraining is needed.

Audio comparison: To evaluate Zorro’s audio capabilities,
we fine-tune our models on ESC-50 (audio-only dataset) and
report results in Table 2. When pre-trained on YouTube-8M,
Zorro performs close to AST, an specialised audio trans-
former comparable in size. When using self-supervised
pre-training, Zorro improves performance over previous
methods; Zorro-ViT has an accuracy of 93.6%, close to
state-of-the-art supervised methods.

4.3. Architecture comparison

In this section, we discuss the different architectures in-
troduced in this paper. In Table 3 we report comparison for

those architectures in two settings: when trained from scratch
and when pre-trained with an audio-visual contrastive loss
followed by a linear layer on top, using Audioset-2M. When
training from scratch, we observe Zorro-Swin performs the
best across the different models, both in the supervised and
contrastive regimes. Although the number of parameters
is larger than ViT, Swin trains 25% faster than ViT. HiP is
the fastest of the three, while not losing much on accuracy.
See Section A in the Appendix for model speed comparison.
Furthermore, in Table 2 we also present the results of fine-
tuning these architectures after contrastive pre-training. It is
important to note that for ViT, in this table we use one set of
parameters per modality, which significantly increases the
parameter count (98M to 267M). In this regime, we observe
how ViT is the best. However, Swin and HiP are faster and
retain most of the performance.

4.4. Zorro model flexibility

Unimodal inference with a multimodal backbone: Here
we study the ability of audio-visual trained Zorro to produce
meaningful unimodal outputs when fed with unimodal data.
To achieve this we zero out the missing modality and only
provide useful inputs for one modality, either video or audio.
Results are reported in Table 3. Models without unimodal



Table 3. Masking configurations and architectures: We evaluate the different masking configurations by training Zorro on AudioSet with
a supervised loss and audio-visual contrastive loss. Specifically, we test the audio-visual trained models on a unimodal (Audio, Video) and
multimodal setting. Our proposed configuration performs well across the board while providing additional unimodal outputs.

Supervised (Audio+Video) Self-Supervised (Audio+Video)
Architecture Params Fusion Video Audio Audio+Video Video Audio Audio+Video

ViT 98M Two Streams 23.1 40.1 42.2 18.9 32.3 34.8
ViT 98M Input Level 9.1 31.6 42.2 Collapse Collapse Collapse
ViT 98M Bottleneck [36] 9.7 32.6 42.5 Collapse Collapse Collapse
ViT 98M Zorro 22.5 39.7 45.1 17.8 29.8 33.6
HiP 136M Zorro 22.0 39.5 45.2 11.3 21.9 26.5
Swin 161M Zorro 25.4 40.6 46.5 20.5 31.6 35.7

output suffer significantly from one missing modality. In
contrast, both Zorro and using two separate modality streams
achieve a high performance when only a single modality is
provided. This is due to the fact that in those models, some
capacity is allocated to each modality specifically and the
model is able to produce unimodal outputs.

Unimodal pre-training for multi-modal fine-tuning:
Through the paper, we assumed availability of large multi-
modal dataset for training. However, in some situations we
only have available large amounts of unimodal samples (e.g.
video or audio) and a small set of multi-modal data. To
showcase the flexibility of our proposal, we run a single
experiment where we train with two unimodal datasets and
fine-tune on a smaller multi-modal dataset. We use only the
audio signal from the AudioSet dataset and the videos from
the Kinetics-400 dataset. When training, we mix batches
with probability 0.5 per dataset, and do not compute the loss
for the missing modalities. For evaluation, we fine-tune the
resulting model on VGGSound and compare its result to the
model trained from scratch. The fine-tuned model performs
at 59.2 top-1 accuracy while the model trained from scratch
performs at 54.4. This experiment shows the flexibility of the
Zorro model to adapt to unimodal training while providing
useful initialization for multi-modal fine-tuning.

4.5. Masking configurations

In this ablation, we study four different types of atten-
tion masking. First, we evaluate having data independent
stream (two streams), where both models share weights but
modalities are not connected. Secondly, we evaluate input
level fusion, which consist of no masking in the model. This
reduces the model to a vanilla ViT applied to the two con-
catenated modalities. Inspired by [36], we also evaluate
bottleneck masking where the fusion tokens can attend to
each modalities’ tokens but each modality can also attend
to the fusion tokens. We want to make clear that although
this approach uses the main proposal from MBT, it is not a
reproduction of their work. This configuration forces each
stream to mostly concentrate on one modality, but informa-

tion can flow across modalities through the fusion vectors.
Finally, we compare all those masking strategies with our
Zorro masking. For each masking configuration we train a
model in a supervised manner (keeping the same number of
outputs for fairness, except for the Two Streams which has
two outputs). We also train the model in a self-supervised
way, where the audio and the video outputs are used to com-
pute the contrastive loss. To report performance, we train a
linear classifier on top of the contrastive representations.

Table 3 reports the results. We extract two main conclu-
sions. First, having modality independent streams is crucial
for self-supervised training. Both the input-level and the bot-
tleneck configurations immediately collapse as information
can flow from one modality to the other. Performance for
Zorro and two streams is very similar as Zorro when trained
in a self-supervised manner reduces to the two stream ar-
chitecture. Secondly, we find that having separate modality
streams is useful also for supervised learning. Specially in-
teresting is looking at the performances of input-level, bottle-
neck and Zorro, where Zorro performs better as the modality
streams are more independently treated. We believe this is
due to the ability of the model to keep modality-specific in-
formation through the network, which can be useful at later
stages of processing. Finally, for self-supervised training of
Zorro, we use equation 3, which trains also the fusion output.
Although this produces a slight decrease on performance
vs two streams, it’s beneficial for downstream tasks. Alter-
natively, when Zorro is trained using only audio and video
outputs, it performs the same as two streams (35.0 vs 34.8)
as the two models are equivalent.

5. Conclusion
In this paper, we introduced Zorro, a novel Transformer

masking configuration which enables simultaneous unimodal
and multimodal training and inference, as well as contrastive
pre-training. Different from previous approaches to multi-
modal perception, our proposed method is able to generate
both unimodal and multimodal outputs. By splitting the in-
formation flow into unimodal and multimodal streams, we



are able to improve performance when the architecture is
trained with a supervised loss and show the ability of the
model to be self-supervised with a contrastive loss. We evalu-
ate our model on multimodal tasks, showing great flexibility
and state-of-the-art performance.
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Appendix
In this appendix we expand the content of the paper in

three different directions. First, we describe in detail the
three Zorro architectures proposed in the paper and com-
pare their speed. Second, we provide details about training,
evaluation and input pre-processing. Third, we study the
importance of the level at which the modalities are fused.

A. Architecture details

ViT: Zorro-ViT is based on the ViT-B/16 architecture,
adapted for multi-modal processing (similar to [36]). For
input video and audio frames, we use patch size 16 × 16
and hidden dimension of 768. The model has 12 self-
attention layers, with intermediate dimension 3072 and 12
attention heads with n = 6 fusion tokens. For decoding
cross-attention, we use a decoder with qk dimension 1024.
Figure 2 details the Zorro-ViT architecture. We use absolute
learned position embedding.
Zorro-Swin: Swin [34] is a ViT-inspired transformer archi-
tecture which has shown improved efficiency and perfor-
mance. The main innovation versus the original ViT archi-
tecture is to apply the self-attention operations on nearby
tokens instead of all tokens in the input image. This reduces
computational requirement while allowing the model to per-
form bottom-up inference. In order to build Zorro-Swin, we
adapt the original 2D Swin [34] to deal with video data by
adding a third dimension to the attention window (we use
3 × 7 × 7) and the position encoding. Similarly to the 2D
version, input tokens are only attended locally, and windows
shift by half window size every two layers.

The Zorro-Swin architecture is depicted in Figure 3. As
with Zorro-ViT, the model processes independently audio
and video, while the fusion tokens cross-attend to the whole
representation. The main difference is that to process video
and audio, we use a Swin model. Specifically, to process the
input audio (spectrograms) we use the original 2D Swin [34],
while for video we use our 3D Swin architecture adaptation.
For 2D Swin we use (4, 4) patches, while for 3D Swin we use
(1, 4, 4). Furthermore, we use 6 fusion tokens (as in Zorro-
ViT) and the input embedding dimension is 128. The number
of layers per block is (2, 2, 6, 2) in both cases, number of
heads are (4, 8, 16, 32), MLP dimensional ratio is 4 and
we use stochastic layer drop with probability starting at 0
in the first layer and linearly increasing to 0.3 in the last
layer. To process the fusion representation, we use the same
self-attention as in Zorro-ViT with 16 heads and widening
factor of 4. We use the relative position bias from [34].
Similarly to Zorro-ViT, no multimodal information flows
into the unimodal streams.
Zorro-HiP: The hierarchical perceiver [13] extends the pre-
viously introduced Perceiver models [26, 27] models, by
splitting the inputs into groups, and operating self-attention

only within those groups. Through the hierarchical archi-
tecture, those groups fuse together in order to aggregate
information and globally reason about the input.

In our implementation of HiP, instead of using directly
the pixels and audio signal as input, we create patches simi-
larly to the ViT/Swin implementation. Specifically, inspired
by [49], we produce the input patches by processing the
input through a sequence of two (Convolution + LayerNorm
+ GeLU) operations and a final (Convolution + Layer Norm)
at the end. The initial two convolutions project the input
to 64 dimensions and the last one to 256 dimensions. The
initial convolution has stride (2, 2, 2) when processing video
and (1, 2, 2) when processing audio. The other convolutions
have stride (1, 2, 2). The final downsample is (2, 8, 8) for
video and (1, 8, 8) for audio. We add Fourier positional fea-
tures and afterwards a learned embedding. Although the
model does not need both positional features, we add the
learned positional embedding to make the model as similar
as possible to other Zorro variants.

In order to create Zorro-HiP, we use HiP building blocks
for each modality and to process the multi-modal stream.
Specifically, those blocks group the inputs into smaller sets,
cross-attend using learned features and finally apply self-
attention layers to the outputs of the cross attention operation
(see [13] for more details). Figure 4 shows the Zorro-HiP
architecture. Each modality is processed by a HiP model.
Differently to the self-attention operation used Zorro-ViT
and Zorro-Swin, in Zorro-HiP the multimodal tokens are pro-
cessed by a HiP model. However, we skip the initial block
of HiP for the fusion latents as these operations would only
be applied to learned embeddings. After the three blocks
are processed, we concatenate all of them together in order
to create the input for the next level of the fusion stream,
which splits the input in groups and cross attend to them all
together. The three HiP models are sharing the same weights
and architecture. We start with 6 embedding vectors for the
fusion stream, drop layers with probability 0.1. The number
of self-attend per blocks are (2, 2, 2, 12, 2), the number of
groups per block is (32, 4, 1, 1, 1), the number of latent vec-
tors per group in each block is (128, 256, 256, 256, 256), the
number of channels per block is (256, 256, 512, 512, 1024),
the number of heads per block is (8, 8, 16, 16, 32). Finally,
we using widening factor of 4 in self-attention.
Training speed: For most of the experiments we use 128
TPU-v3 cores. Here, we compare the speed of the three
presented Zorro architectures. Under similar conditions (8
frames at 3.12 FPS) and using batch size 512, Zorro-ViT
(98M parameters) has a speed of 3.2 steps per second, Zorro-
Swin (161M parameters) has a speed of 4.2 steps per second
and Zorro-HiP (136M parameters) has a speed of 5.4 steps
per second, where each step is a forward and backward pass.
For Zorro-ViT, when we use separate weight per each stream
(267M parameters), the speed drops to 2.8sps. Zorro-HiP
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Figure 3. Zorro-Swin: The input to our model are video frames and audio spectrograms. Each of those inputs is patched using a 2D
convolution and projection to input dimension D = 128. Next, the audio tokens are processed by a 2D Swin, while the video tokens
are processed by a 3D Swin. The fusion tokens are processed by standard self-attention layers. At the end of each of the B blocks, a
cross-attention operation is applied to produce the next fusion tokens. Specifically, our architecture blocks the information to flow towards
the unimodal hidden representation, while still allowing the fusion representation to access all modalities. By doing this, we ensure that the
video and audio representations have gated access to (i.e. depend on) only the video and audio inputs respectively. To produce the outputs,
following Perceiver IO [26], we learn a set of queries that cross-attend to the unimodal and multimodal representation. We also use masking
at the decoding stage to make sure we can produce unimodal outputs as well as multimodal outputs. By doing this, we can train Zorro-Swin
using a self-supervised loss which requires unimodal representations.

and Zorro-Swin are clearly faster models than ViT. However,
as reported in Table 2 in the paper, when fine-tunning, Zorro-
ViT still performs the best of the three architectures.

B. Implementation and training details

Audio and video pre-processing

The inputs to our model are video and audio. The audio
and video data are synced and cover the same time span.

Video augmentation: The input videos consist of 8 frames
of size 224× 224. When training on AudioSet from scratch
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Figure 4. Zorro-HiP: The input to our model are video frames and audio spectrograms. Each of those inputs is patched using a sequence of
3D-convolutions and projection to input dimension D = 256 . Next, each modality and the fusion tokens are processed through independent
HiP blocks (which share weights). The architecture blocks the information from flowing towards the unimodal hidden representation, while
still allowing the fusion representation to access all modalities. By doing this, we ensure that the video and audio representations have gated
access to (i.e. depend on) only the video and audio inputs respectively. To produce the outputs, following Perceiver IO [26], we learn a set
of queries that cross-attend to the unimodal and multi-modal representation. We use masking at the decoding stage to make sure we can
produce unimodal outputs as well as multimodal outputs. By doing this, we can train Zorro using a self-supervised loss which requires
unimodal representations.



or fine-tuning in Kinetics, we sample videos at 3.12FPS.
When training in YouTube-8M, ACAV-100M or fine-tunning
in VGGSound we sample at 1.25FPS. Finally, when fine-
tuning on AudioSet-500k or training Zorro-HiP in ACAV-
100M, we sample at 1FPS. During training, we use ran-
dom cropping as well as color augmentation in the visual
input. For random cropping, we sample a random bound-
ing box which covers at least 30% of the frame and the
whole frame at maximum, with a random aspect ratio in
the range (0.9, 1.33). We apply color augmentation with
probability 0.8, color randomisation on saturation and con-
trast (0.6, 1.4), brightness (max delta=32/255) and hue with
(max delta=0.2).

Audio augmentation: The audio input consist of 2.56s for
training from scratch on Audioset and fine-tuning in Ki-
netics, and 6.4s when pre-training on YouTube-8M and
ACAV-100M or finetuning in ESC-50 and VGGSound and
8s when fine-tuning in AudioSet or training Zorro-HiP in
ACAV-100M. Audio is sampled at 48kHz. We use Log-Mel
spectrograms as inputs to our model using 128 bins with
Hanning windows of length 1200 samples and stride 480.
To augment the audio, we use SpecAugment [38] and fre-
quency jittering where we shift the frequency by an integer
sampled on the range (−10, 10). When fine-tuning ESC-50,
we use the same input length as in pre-training (6.4s). As
the input length is larger than ESC-50 samples, we loop over
the samples.

Evaluation details: For evaluation, we use equally spaced 8
frame clips with the same stride as during training. Further-
more, we take 3 crops for each of those clips and average
the resulting predictions for multi-crop evaluation. When
evaluating ESC-50, we feed a single clip as it covers the
whole length of the signal. We report performance in the
test set for AudioSet and VGGSound and validation set for
Kinetics-400. For ESC-50, we average the performance of
the 5 splits.

Optimisation details: Details about optimizers and hyper-
parameters for models used in the paper can be found in
Table 5. For AudioSet from scratch we select the highest
learning rate (using 0.0003 as maximum) that does not lead
to collapse. When fine-tuning, we choose the learning rate
by evaluating without augmentation. In ESC-50, we use the
first split to select the learning rate. We train all our models
with batch size 512 and we use learning rate scaling with fac-
tor batch size

256 . We train all models for 50 epochs except for
the ACAV-100M models which we train for 10 epochs. For
the ablations Bottleneck and Vanilla, we train for 25 epochs
to prevent overfitting. For fine-tuning in AudioSet-500k,
we use label smoothing of 0.15 and modality mixup [56].
Different from [36], we need to provide supervision not only
for the multimodal output but also for the unimodal output.
This means the mixup procedure can be performed in many

Table 4. Modality fusion position. We report the performance
of our models trained on audio-visual data when the multi-modal
fusion is done at different layers.

Fusion level Audio Video Audio+Video
0 37.6 20.8 44.2
3 38.0 21.4 44.6
6 37.5 20.3 44.2
9 37.6 20.9 44.4

different ways. We find sampling a single mixup value from
a β(0.3, 0.3) the best configuration to apply mixup.

Contrastive learning: In order to pre-train Zorro using the
audio-visual contrastive loss, we define two projectors for the
audio and video ouputs of the model, with different weights.
When training the model with the complete contrastive loss
involving the fusion weights, we create a third projector for
the fusion output. Those projectors consist of an MLP using
hidden dimensionality of 512. We use temperature τ = 0.08
for the training loss.

C. Fusion position
In this section, we extend the study presented in the main

paper to study the effect of introducing the fusion tokens
starting at a certain level of the network, inspired by [36].
For these experiments, we trained our models on AudioSet-
2M for 25 epochs and report performance using the standard
evaluation protocol as described in Section B.

In Table 4 we report the performance of our model when
introducing the fusion stream at a different layer of the net-
work. In previous layers, the fusion tokens are not used.
Interestingly, the position of where to introduce the fusion
layer does not seem critical to the overall performance of
the model. We attribute this to the fact that Zorro keeps its
unimodal streams untouched, preventing the full represen-
tation from overfitting to the most informative modality for
a given task. In order to align with standard architectures,
we choose to use our fusion layers from the beginning of the
model.



Table 5. Hyperparameters. For reproducibility, in this table we report the hyperparameters used for each model in the paper.

Model Sup. Dataset Scratch/Fine-tunning Optimizer Learning Rate Weight Decay
Zorro-ViT Supervised AS Scratch Adam 0.0003 10−6

Two Streams Supervised AS Scratch Adam 0.0001 10−6

Vanilla Fusion Supervised AS Scratch Adam 0.0001 10−6

Bottleneck Fusion Supervised AS Scratch Adam 0.0001 10−6

Zorro-ViT Contrastive AS Scratch Adam 0.00005 10−6

Two Streams Contrastive AS Scratch Adam 0.00005 10−6

Zorro-Swin Supervised AS Scratch Adam 0.0001 10−6

Zorro-HiP Supervised AS Scratch Adam 0.0001 10−6

Zorro-Swin Contrastive AS Scratch Adam 0.0001 10−6

Zorro-HiP Contrastive AS Scratch Adam 0.00001 10−6

Zorro-ViT Supervised YT8M Scratch Adam 0.00008 10−6

Zorro-ViT Contrastive ACAV Scratch Adam 0.00005 10−6

Zorro-Swin Contrastive ACAV Scratch Adam 0.00005 10−6

Zorro-HiP Contrastive ACAV Scratch Adam 0.0001 10−6

Zorro-ViT Supervised AS-500k FT (ACAV-100M) SGD 0.08 10−6

Zorro-ViT Supervised AS-500k FT (YT-8M) SGD 0.06 0
Zorro-ViT Supervised AS-500k FT (IN-21k) SGD 0.1 0

Zorro-Swin Supervised AS-500k FT (ACAV-100M) SGD 0.05 0
Zorro-HiP Supervised AS-500k FT (ACAV-100M) Adam 0.0001 0
Zorro-ViT Supervised VGGSound FT (ACAV-100M) SGD 0.01 0
Zorro-ViT Supervised VGGSound FT (YT-8M) SGD 0.01 0
Zorro-ViT Supervised VGGSound FT (IN-21k) SGD 0.08 0

Zorro-Swin Supervised VGGSound FT (ACAV-100M) SGD 0.05 0
Zorro-HiP Supervised VGGSound FT (ACAV-100M) Adam 0.0001 0
Zorro-ViT Supervised K400 (V+A) FT (ACAV-100M) SGD 0.05 0
Zorro-ViT Supervised K400 (V+A) FT (YT-8M) SGD 0.07 0
Zorro-ViT Supervised K400 (V+A) FT (IN-21k) SGD 0.08 0

Zorro-Swin Supervised K400 (V+A) FT (ACAV-100M) SGD 0.05 0
Zorro-HiP Supervised K400 (V+A) FT (ACAV-100M) Adam 0.0001 0
Zorro-ViT Supervised K400 (V) FT (ACAV-100M) SGD 0.08 0
Zorro-ViT Supervised K400 (V) FT (YT-8M) SGD 0.08 0
Zorro-ViT Supervised K400 (V) FT (IN-21k) SGD 0.08 0

Zorro-Swin Supervised K400 (V) FT (ACAV-100M) SGD 0.05 0
Zorro-HiP Supervised K400 (V) FT (ACAV-100M) Adam 0.0001 0
Zorro-ViT Supervised ESC-50 FT (ACAV-100M) Adam 0.0009 0.001
Zorro-ViT Supervised ESC-50 FT (YT-8M) Adam 0.0009 0.001
Zorro-ViT Supervised ESC-50 FT (IN-21k) Adam 0.0009 0.001

Zorro-Swin Supervised ESC-50 FT (ACAV-100M) Adam 0.0007 0
Zorro-HiP Supervised ESC-50 FT (ACAV-100M) Adam 0.0003 0
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